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LATERAL BUCKLING OF A CANTILEVER SUBJECTED
TO A TRANSVERSE FOLLOWER FORCE

MARIO COMO
Istituto di Tecnica delle Costruzioni, University of Naples, Italy

Abstract-In this note we study the stability of bending-torsional equilibrium of a cantilevered bar subjected at
its end section to a follower force; this case may represent a wing subjected to the jet of a turbine-engine.

Making use of the dynamic analysis, we can determine the critical thrust.

1. INTRODUCTION

THE PROBLEM of stability of the elastic equilibrium of systems subject to non conservative
forces is becoming more and more important in the theory of structures, because of the
rapid and continuous progress of modern technology. It is thus necessary to consider still
more types of forces acting on the structure, and the traditional loads occurring in the
classical theory of stability of equilibrium, that is forces having a potential and usually
caused by the dead load, can be considered only as a particular type among all forces
studied in modern engineering, espocially in the fields of mechanics, aeronautics and
rocketry.

Such developments brought a revision of certain principles governing the equilibrium
stability, which were acquired in the technical practice because of the current use of
research methods the validity of which, for certain fields, is usually taken for granted.
Some discrepancies were discovered concerning the equilibrium stability, of the axes of
propellers and turbines subject to torsion and, consequently, the soundness of the static
approach was discussed, As a result, Ziegler's theory [1] appeared to be a basic one; his
subtle analysis pointed out the various aspects of the problem with reference to the more
general definitions ofthe equilibrium stability, in accordance with Poincare and Liapunov,
in connection with the study of the motion characteristics of a perturbed system.

To the static concept of Euler's instability, caused in an elastic system by conservative
forces, which contains the physical phenomenon by which the system loses its elastic
reactivity because of the destabilizing effects of applied forces, a new concept 'was added,
considering the possibility of "resonance" conditions between the nonconservative forces,
due to the deformation of the system, and the system itself subject to oscillation.

Various problems have been studied, starting from the basic case (one of the first ones
analysed) of a cantilever subjected to an axial "follower" force, that is a force acting always
along the tangent to the elastic line at the end section. Some of these problems are: in
the field of mechanics, the equilibrium stability of shafts subjected to torsion with torque
having a vector axis constant or variable [2-4] and, i,n the field of aeronautics, the stability
of plates, cylinders, etc. oscillating in gas flow [5].

In our opinion, among all cases of nonconservative forces encountered in technology
particularly interesting is the "follower" force, following the deformation of the system
to which it is applied. Such force idealizes the impulse of a jet-engine applied to the
structure. Therefore we want to study, in this note, a stability problem which. to our
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knowledge, has not been studied as yet; that is the bending-torsional equilibrium stability
of a cantilever subjeoted to a transverse "follower" force applied at its end section.

Generalizing from the conservative to the nonconservative field, a typical stability
problem studied by Prandtl and Michell, we examine a case of instability which describes
the behaviour of a wing supporting a jet-engine. Such study could be a starting point
for some researches in the field of stability of wings supporting jet-engines when jet
effects are combined with aerodynamic effects.

2. DIFFERENTIAL EQUATIONS GOVERNING THE PROBLEM

Let us consider a cantilever having a thin rectangular section and length 1as shown in
Fig. 1.
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FIG. I. Cantilever subjected to a follower force at Its end section.

With reference to the fixed Cartesian coordinate system of the figure Cxyz, C and Ely
are the torsional and the flexural rigidity around the z and y axes, respectively, and F is
the "follower" force applied at the end z = 1.

We consider F following the tT axis which represents the y axis moving with the cross
sections of the beam, as shown in Fig. 2. Furthermore, we consider

u = u(z, t) (1)

to be the displacement component along x, which is positive if in the positive direction of
x, of the beam axis describing the flexural oscillation around y, and

<P = <p(z, t) (2)

to be the component describing the torsional oscillation, which is positive in the case of
Fig. 2.

For z = I, (1) and (2) are Ul and <Pl'
Considering the equilibrium of the portion of the cantilever to the right of section

z in the deformed condition, characterized by a deflection around y, (1), and a torsion
(2), the moments with respect to fixed axes x, y, and z of force F, now inclined by <PI
with respect to y (Fig. 2), are given by:

M x = F(/-z) cos <PI

M y = -F(I z)sin<pI (3)

M z = -F(UI-U)COS<Pl
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that is, neglecting small quantities of higher order than the first,

M", = -F(l-z)

My = -F(I-z)qJl

M z = -F(u 1 -u).

FIG. 2. Position of the follower force with respect to the cantilever cross sections.
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(4)

(5)

Calculating the components of moments (4) around axes ~, '1, (, where ~ and '1 are the
main inertia axes of displaced sections, and ( is the tangent to the deformed beam axis
during the oscillation, we have, neglecting small quantities of higher order than the first,

M~ = -F(l-z)

M" = F(l-Z)(qJl-qJ)

ou
M, = -F oz(l-z)+F(u 1 -u).

We must observe that in (5), unlike the typical conservative case of Prandtl and
Michell, in M" there appears the term F(l- Z)qJ 1 due to rotation qJ 1 of F.

In order to complete the differential equations of the problem, we must now evaluate
the inertia forces.

If we think of the main application of the problem in technology, we cannot omit
considering the presence of a mass m at the end section Z = I (Fig. 3).

z

FIG. 3. Distribution of masses for a cantilever.
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Particularly in the case we are studying, that is the wing stability under the jet of a
jet-engine applied at the end section, we will not make a considerable error, trying
to find Fcrit' and we will simplify considerably the analytic procedure, by neglecting the
effects of the mass distributed by the cantilever with respect to the concentrated mass m
which we consider having a mass inertia moment I z'

With such simplification and with (5) we will have the following equations which
govern the bending-torsional dynamics of the cantilever:

3. INTEGRATION OF THE DIFFERENTIAL EQUATIONS SYSTEM (6)

(6)

With the assumption

u(z, t) = U(z) exp iwt

ul(t) = U 1 exp iwt

({J(Z, t) = <D(z) exp iwt

((Jl(t) = <D2 exp iwt
(7)

we obtain from equations (6) a system of ordinary differential equations

-C~~+F(l-Z)~~-F(U l -U)-lzw2<D l = O.

Solving for ~2Z~ from the first equation (8), we have:

d 2 U F m 2
-2 = -(l-z)(<Dl-<D)--(l-z)w U l ·dz EI}. Ely

(8)

(9)

Then, differentiating the second equation (8) and substituting into it equation (9), we
obtain:

d2 <D F 2
2 F 2 2

-C-+-(l-z) (<DI-<D)--(l-z) mw U I = 0
dz2 Ely Ely

the resulting equation for <D (z).
Setting

s = l-z

and

(10)

(11)

(12)
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equation (1) is changed into:

d2<1>
_+V4s2<1> =
ds2

(13)

which admits the general integral

(
mw

2
)<I>(s) = A oiXo(s)+A 1iX l(S)- TU1-<I>1

where iXo(s) and iXl(S) are represented by the infinite series:

v4
S

S
V

8
S

9
V

12
S

13

iX 1(S) = s-4.5 + 4.5.8.9 4.5.8.9.12.13+'"

(14)

(15)

(16)

The constants Ao and Al of equation (14) will be determined by applying the boundary
conditions

and

(<1». =1 = O.

(17)

(18)

(19)

(21)

By substituting into equation (9) equation (19) with twice repeated integration, we
obtain the expression for U(s)

F<I>I 83 F mw2 S3
U(s) = - ---J2(S)--U1-+A2s+A3 (20)

Ely 2.3 Ely Ely 2.3

where the two constants A2 and A3 will be determined by applying the boundary condi­
tions to U(s).

The function J is), which appears in equation (20), derives from the repeated integra­
tion of equation (19~ Using the notation:

J 1(S) = Js<l>(s) ds

{r I.w
2 iXl(1) 1 J mw2 }(S2 v4

S6 v8 S10
Cc iXo(l) - iXo(1) <1>1 +FiXo(l) U1 2-3.46+3.4.7.810
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we have:
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(U)s=l = 0

(dU) _0
ds s=/-

(22)

(23)

(24)

finally give:

FI> S3 F mwz
S3 [ F 1z ~U(s) = ._1 ---Jis)--U1-+ -J1(l)--(F<1>1-mwZU1) s

Ely 2.3 Ely Ely 2.3 Ely 2Ely
(25)

+ L:l}F<1>1 -mwzUd- ~YJl(l)-Jz(1)~.

In this manner we obtain the functions <1> = <1>(s) and U = U(s) which integrate the
differential equations system (6) and satisfy the boundary conditions (17), (18), (23), and
(24).

4. DETERMINATION OF CRITICAL FORCE

With equations (19) and (25) we have now the equations of bending-torsional oscilla­
tion "frequencies" of the cantilever by applying the conditions:

(U)s=o = U1

(<1»s= 0 = <1>1

which are explicitly represented by the system:

13 F
3El

y
(F<1>I-mwZU I)-Ely [ll 1(1)-Jz(1)] = U I

[
lzW

Z 1>:1(1) 1 1 mwZ 1 Z

- <1>1 C ao(1)+ao(l)J + U I Fao(l) -F(mw U 1 - F<1>I) = <1>1

which is linear and homogeneous in the unknowns U 1 and <1> l'

To simplify, if we denote:

1 t/J t/JZ
PI =----+

2 3.4.6 3.4.7.8. 10

1 t/J t/Jz
Pz = -- +------

3 3.4.6.7 3.4.7.8.10.11

(26)

(27)

(28)
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1 ~ ~2
P3 = - +-------=-

2 . 3 4. 5. 7 . 8 4. 5 . 8 . 9 . 11 . 12

1 ~ ~2
P4 =-- +-----....,.-::-

3.4 4.5.7.8 4.5.8.9. 11 . 12

where ~ is the nondimensional quantity

p 214

~ = v414 =-­
eEl)'
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(29)

(30)

where we denote the frequency co by the nondimensional quantity:

mco213

Q2=EI'
y

As a result we have the condition:

(32)

= 0 (33)

and, expanding the determinant, we obtain:

Q4{at(l)(P3 - Pt)+ [1-(Xo(l)](P4 - P2)}8+Q2
[ -at (1}9+(P3 - pt)J-l = 0 (34)

where we used the notations:

(35)

and

(36)

Equation (34) for the various values of quantities ~ and 8, which indicate the applied
force F, and the geometrical and mechanical characteristics of the cantilever (wing),
gives the frequencies w of bending torsional oscillation.

First of all, before determining the possible Fcrit' we can observe that, with a wrong
formulation of the nonconservative problem, by applying the static method, no doubt
the system would appear always stable. In fact, if we have co = 0, the determinant of (33)
could never equal zero, thus we would have only U(s) = cD(s) O.
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On the contrary, the critical condition is obtained by studying the dynamic problem;
in fact, if d is the discriminant of equation (34), the critical value of F is the value which
annuls d.

The condition:

d=O

can be expressed, with equation (34), as follows:

[at(l)9+(P3 - PtW = 4[txo(l)-I]9(p4 - pz}

(37)

(38)

Equation (38) for the unknown 1/1 given by equation (30), is difficult to solve because
of the type of equations (29).

We can simplify it considerably by observing that quantity 9- is very small compared
with unity. In fact, it is approximately tOloo or even less.

Therefore, in order to determine Feril' it will not be a great mistake to replace equation
(38) by the simpler condition:

P3-Pt=0

which, with equations (29) and (39), can be expressed as follows:

P3-Pl = -!(I-L+ I/IZ __1/1_
3

_
3 4.7 4.7.8. 11 4. 7.8. 11. 12. 15

+ 1/14 ...) = 0.
4.7.8. 11 . 12. 15. 16. 19

(39)

(40)

It is found that root I/Ierit lies between 47 and 49.
A more accurate calculation, supported by equation (381 with acceptable approxima­

tion for 9 ~ 10- 3
, gives:

Therefore we have the critical force:

I/Ierit == 48·80. (41)

(42)

The changes of the characteristic exponent of equation (7) with force F is shown in
Fig. 4, which represents the complex plane.

If F = 0, we have the four values of the exponent:

corresponding to the separated flexural and torsional oscillations.
On the other hand, the presence ofF in equation (34) couples the flexural and torsional

oscillations and Feril' given by equation (47), leads to the double root

±iwerit

represented in the figure by the joining point of the two arrows. For F > Fcrit the charac­
teristic exponents leave the imaginary axis and become complex. In this case the presence
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of the characteristic exponent having a positive real part indicates loss of stability by
oscillations with increasing amplitude.

Jm

FIG. 4. Characteristic exponents In the complex plane.
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Resume-Dans cette note nous etudions la stabilite de I'equilibre de flexion-torsion d'une barre en console,
soumise iI sa extremite iI une force suivante; ce cas peut representer une aile soumise a la poussee d'un moteur
iI fusee.

En faisant usage de l'analyse dynamique, nous pouvons determiner la poussee critique.

Zusammenfassung-In dieser Anmerkung studieren wir die Stabilitiit des Biegungs-yerdrehungs Gleichgewichts
eines Kragtriigers, welche an freiem Ende einer mitgehenden Kraft unterworfen ist; dieser Fall kann einen
Fliigel darstellen, welcher dem Schub eines Turbinenmotors ausgesetzt ist.

Bei Verwendung der dynamischen Analyse, konnen wir den kritischen Schub bestimmen.

A6cTpaKT-' B 3TOii. 3anHCKe H3Y'laeTCIl YCToiilJHBOCTh H3rH6alOw;e-KpYTHJIhHOrO paBHoBecHII KOHCOJIhHOrO

CTeplKHlI, nO,ll.BeprHYToro B ero KOHelJHoii: ceKIUUI Be,ll.OMOll: cJIe,ll.'lw;ell: CHJIe; 3TOT cJIY'lall: MOlKeT npe,ll.CT­

aBJIIITh H3 ce611 KphlJIO, nO,ll.SCprHYToe ,lI.ell:cTBHIO Typ6o-peaKTHBHoro ,lI.BHraTeJIlI. TIpHMeHlI1I ,lI.HHaMH'le­

CKHll: aHaJIH3, MhI MOlKeM onpe,ll.eJIHTh KpHTH'lecKylO CHJIy TlIrH.


